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1 | INTRODUCTION

1.1 | Background

The demand response (DR) program is an effective solution to promote the low-carbon
operation of power systems with increasing penetration of renewable energy sources
(RESs). This paper proposes a low-carbon DR program for power systems to enhance
both the environmental friendliness and uncertainty resilience of the system operation.
The system operator aims to minimize both the system’s operation cost and carbon trading
cost. To handle the uncertainty associated with stochastic RES generation power and load
consumption powet, a data-driven method named the two-sided distributionally robust
chance-constrained (TS-DRCC) approach is adopted to enhance the system’s uncertainty
resilience. A ladder-type carbon trading scheme is utilized to calculate the carbon emission
cost of the system. Comprehensive analyses of case studies have been conducted to validate
that the proposed strategy can effectively reduce the total carbon emissions and total oper-
ation costs with good uncertainty tesilience performance. The proposed low-carbon DR
program is verified to achieve 63.64% more carbon emission reduction compared with
the conventional DR program. Besides this, the proposed low-carbon DR program can
also achieve 4.39% carbon-intensive generation power reduction and 5.52% RES power
consumption compared with the conventional DR program.

wind and solar energy, RESs exhibit strong randomness and
uncertainty [5]. The integration of large-scale RESs poses a
great challenge to the safe and stable operation of power sys-
tems, and the traditional passive operation mode [0] is no

Worldwide global warming and climate change problems call
for an urgent need to replace carbon-intensive and high-
pollution fossil energy sources with low-carbon and clean
renewable energy sources (RESs) in power systems [1, 2] In
recent years, the installed capacity of renewable energy gen-
erators such as wind turbines (WTs) and photovoltaic arrays
(PVs) around the wortld has continued to grow [3, 4]. How-
ever, due to the significant impact of unpredictable weather
factors on the output of renewable energy sources such as
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longer suitable for power systems with high penetration RESs.
An effective solution to improve the system operation flex-
ibility is to guide distributed energy resources (DERs) on
the demand side, such as flexible loads (FLs) to cooperate
with the operation of the power systems [7]. In this con-
text, the demand response (DR) program has been proposed
to fully exploit the flexibility potential of FLs for enhancing
the system operation flexibility in the face of large-scale RES
penetration [8].
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1.2 | Literature review ing the newest forecast profiles for PV power and demand-side
load power.

1.2.1 | DR program The CC method [20] assumes the uncertainties follow cet-

The DR program has received increasing attention due to its
efficiency in unlocking the flexibility potential of the demand
side [9, 10]. Generally, the DR program can be divided into two
categories including price-based DR programs and incentive-
based DR programs [11]. In [12], a power system optimal
dispatch model considering the residential users’ participation
uncertainty and response uncertainty is proposed by using
incentive-based DR programs. However, the network operation
constraints are ignored in [12] and thus the proposed model
may not ensure the system operation security in practical power
system operation. A supply-demand cooperative responding
strategy based on both day-ahead and intra-day time scales is
proposed in [13] by incorporating both price-based DR pro-
grams and incentive-based DR programs. Yet the uncertainty
of RES power forecast error is assumed to follow the Gaussian
distribution in [13], which may not correspond with the real sit-
uation and lead to relatively high decision errors. An economic
dispatching strategy considering the uncertainties of RES power
and DR programs is proposed in [14] based on both price-based
DR programs and incentive-based DR programs. The informa-
tion gap decision theory IGDT) is adopted to evaluate risks
associated with uncertainties in [14].

1.2.2 | Uncertainty problem

Properly coping with uncertainty associated with the demand-
side DERs (including stochastic RESs and user loads) is crucial
to improving the RES accommodation to the new power
systems [15]. To address the uncertainty problem, various
approaches have been developed to enhance the resilience of
the system operation strategy under the stochastic environment.
The representative approaches for handling uncertainty are the
stochastic optimization (SO) method, chance-constrained (CC)
method, and robust optimization (RO) method.

The SO method [16] is typically quite intuitive because it con-
siders the stochastic scenarios of uncertainties. Therefore, the
effectiveness of the SO method heavily depends on the fore-
cast data accuracy. However, the forecast errors are inevitable
because of the inherent volatile and stochastic nature of the
demand-side DERs. One possible way to mitigate the negative
influence caused by inaccurate forecast data is to enlarge the
stochastic scenarios set. However, this will inevitably lead to
heavy computational burden and complexity. In [17], the DR
program for multi-energy industrial microgrids is formulated as
a scenario-based SO problem to tackle the uncertainty of PV
power. Similar to [17], a scenario-based SO model is proposed
in [18] to solve the energy and flexibility dispatch problem of a
microgrid with solar and stationary battery systems. Inspired by
the model predictive control (MPC) method [19], which is quite
efficient in coping with real-time uncertainty, the formulated SO
problem in [18] is solved in the rolling horizon by consider-

tain known probability distributions and allows violation of
uncertain constraints with pre-defined probability. The CC
method can achieve better computational efficiency compared
with the SO method. However, as the same with the SO
method, the effectiveness of the CC method also relies on accu-
rate probability distribution, which is hard to get in practical
applications. A CC-based electric vehicle (EV) optimal dispatch-
ing strategy considering EV drivers’ response uncertainty is
proposed in [21]. The conditional value at risk (CVaR) approxi-
mation method and the sequential convex approximation (SCA)
method are adopted to make the chance constraints tractable.
In [22], a CC-based economic dispatch (ED) model for power
systems is proposed to co-optimize the generation problem of
the conventional distributed generators (DGs) and curtailment
strategies of RESs.

Different from the SO method and the CC method men-
tioned above, the RO method [23] does not need any pre-known
information about the uncertainties, it considers the worst sce-
nario within the ambiguity set to ensure the robustness. In
[24], an optimal DR program based on the distribution loca-
tional marginal price (DLMP) is proposed, and the uncertain
PV power generation is tackled by the RO method. A two-
stage RO method based on the adaptive uncertainty set is
proposed in [25] to solve the ED problem of the microgrid
by utilizing EV resources. However, the RO method often
derives the over-conservative strategy since it only considers the
worst scenario, which is typically a low-probability scenario in
practical application.

Fortunately, some data-driven methods like the distribution-
ally robust optimization (DRO) [20] approach can offer a
promising way to better cope with the uncertainty problem.
The data-driven DRO approach only needs historical data about
the uncertainty rather than prior knowledge about the actual
uncertainty distribution. By propetly processing the historical
data (i.e. the training data) about the uncertainty, the DRO
approach can gain knowledge from the hidden information
about the training data set to assist the decision procedure. The
main differences between the DRO approach and the afore-
mentioned methods can be summarized as follows: (i) Unlike
the SO/CC method which relies on the uncertainty distribu-
tion forecast accuracy, the DRO method does not rely on
the assumed exact uncertainty distribution. Instead, the DRO
method establishes the ambiguity set of the unknown uncer-
tainty distribution, in this way, the DRO method can still retain
its robustness under the worst uncertainty distribution case; (ii)
Compared with the RO method, the DRO method can fut-
ther utilize the hidden information of the uncertainty data set
to avoid the over-conservative decision.

In [27], a Wasserstein metric (WM) based DRO model is
proposed to co-optimize the transactive energy trading and
network operation of interconnected microgrids. However, the
impact of the uncertainty on the network operation con-
straints hasn’t been investigated in [27]. The distributionally
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robust chance-constrained (DRCC) method [28] has been pro-
posed to better handle the uncertain operation constraints
more efficiently. The DRCC method can ensure that the vio-
lation probability of the uncertain constraints can be limited
within the preferred range regardless of the probability dis-
tribution of the uncertainty, which is a good characteristic in
the face of inaccurate forecast data. To address the uncertain-
ties of RESs and unpredictable contingencies, a comprehensive
DRCC-based framework for microgrids is proposed in [29]. Yet
[29] considers the one-sided DRCC (OS-DRCC) operation con-
straints, which will lead to the inexact constraint approximation
problem under the stochastic environment.

1.2.3 | Decarbonization problem

The decarbonization of power systems has been regarded as an
indispensable element of the power system transition process.
In [30], the carbon capture unit is utilized to capture the car-
bon emission of the carbon-intensive generators to implement
the low-catbon ED of the combined heat and power virtual
power plants (VPPs). Yet the utilization of the carbon capture
unit will add more equipment investment costs. A fixed carbon
trading price mechanism is adopted in [31] to consider the car-
bon emission cost during the system operation. However, the
fixed carbon trading price may not be suitable for further pro-
moting the power system’s low-carbon operation since it can not
propetly distinguish the carbon emission responsibilities among
different entities. To overcome this shortcoming of the fixed
carbon trading price mechanism, the ladder-type carbon trad-
ing price scheme [32] is adapted to further motivate participants
to reduce their carbon emissions. More recently, a new con-
cept named the committed carbon emission operation region
(CCEOR) has been proposed in [33] to efficiently analyze the
low carbon operation of integrated energy systems (IESs). The
proposed CCEOR in [33] can visually characterize the low-
carbon feasible space and provide comprehensive low-carbon
operation information of operation conditions for the IESs.

1.3 | Contributions

Inspired by the aforementioned problems and inspiring works, a
low-carbon DR program for power systems considering uncet-
tainty is proposed in this paper. The main contributions of this
paper are listed as follows.

* Different from the existing works [12, 13] only focusing on
the electricity DR program, this paper also takes the carbon
emission impact of the system’s strategies into consideration
and further proposes a low-carbon DR program.

* Compared with the OS-DRCC approach in [29, 34] to han-
dle the uncertainty constraints, this paper adopts a more
accurate two-sided DRCC (TS-DRCC) approach to enhance
the uncertainty resilience of the system strategies under the
stochastic real-world environment.

* The impact of the uncertainty on the power system’s opera-
tion constraints has been comprehensively considered in this
work compared with [27] to provide better decision guidance
for the system operator.

1.4 | Organisation

The rest of the paper is organized as follows. Section 2 illus-
trates the proposed low-carbon DR program framework in
detail. Section 3 presents the problem formulation process of
the proposed low-catbon DR program for power systems by
using the TS-DRCC approach to cope with the uncertainty
problem. To make the origin problem tractable, Section 4 pro-
vides the second-order cone (SOC) based convex reformulation
method to convexify the origin intractable implicit distribution-
ally robust chance constraints. Comprehensive case studies are
provided in Section 5 to verify the advantages of the proposed
strategy. Finally, the conclusions are presented in Section 6.

2 | DATA-DRIVEN LOW-CARBON DR
PROGRAM FRAMEWORK

The framework of the proposed low-carbon DR program for
power systems considering uncertainty is presented in Figure 1.
First, the uncertainty historical data set can be pre-processed
by calculating the first-order and second-order moment infor-
mation. Then, the ambiguity set based on the limited moment
information about the uncertainty can be formulated regard-
less of the concrete uncertainty distribution. The uncertainty
constraints are formulated as distributionally robust chance
constraints first. To make the intractable and implicit distribu-
tionally robust chance constraints tractable and explicit ones, the
SOC-based convex reformulation method is adopted to con-
vexify and approximate these constraints. Finally, by considering
the carbon emission impact of the system’s operation strategies
based on the ladder-type carbon trading scheme, the low-carbon
DR program of the power systems is implemented.

3 | PROBLEM FORMULATION

3.1 | Ambiguity set formulation

To cope with the uncertainty problem during the system opera-
tion horizon, the moment-based DRCC approach is adopted in
this paper. The ambiguity set defined by first-order and second-
order moment information is built to restrict the underlying
possible probability distributions of RES power forecast errors,
which is given as follows:

Pl i={Py t Bel§] = w Bel @ — m)E" — )1 = 215,
@
where Ep denotes the expectation operator and &N is the node
RES power forecast error at time slot 7, gt and Z} are mean
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Low-Carbon DR Program Framework
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FIGURE 1 The framework of the proposed low-carbon DR program.

value vector and covariance matrix of §F, respectively. The
ambiguity set formulation process for the load power forecast
error is provided in Appendices, Section A for the clarity of
this paper.

3.2 | Objective function

Based on the moment-based DRCC approach, the opera-
tion cost minimization problem of the system considering
uncertainty is formulated as follows:

TR W IAE S AL AR (2a)

teT

. i N T U
¢ =P¢ CSPC +CC PC+CR RO +R>Y),  (2b)

DG generation cost DG reserve cost

T
f;R — CR,cut P;{,cut , (ZC)
| —
RES curtailment cost
T
Sh= Chds APy (2d)
[ —

Load discomfort cost

—7C@+30)8 +7°(1 + 3/1)( B 4 25) ES < o8
—mEU+ DS+ 2+ 20 (B +8), -8 < 5 <=8
U+ ANE, —6 < E
CEY0< X< 8
7°8 + 71 +p)< g‘”‘—5) 5 < BV <28
TR+ p)S+ 7wt + 2p)< B = 25) 26 < BV <36

Sys, tr

<0

TCG+p)S + 7+ 3p>( BT 35), 38 < £

Carbon emission cost

(20)

In (2), (2a) is the total system operation cost. (2b) is the
operation cost of the DGs at time slot #, which includes the
generation cost and the reserve cost. (2¢) and (2d) are the
RES curtailment and load DR adjustment cost at time slot 7,
respectively. (2¢) is the carbon trading cost at time slot 7.

3.3 | Constraints

3.3.1 | DG operation constraints

The operation constraints of the DGs are formulated as follows:

Ry =df (eT&]), (32)

PP <PO <P, (3b)

Oy <R <RUC, (3¢)

Oy < RO <RPC, (3d)

PO+ RO - (PO, —RDY) <2V, (3¢)
PO, + RO - (B -RPC) <20, (3
Oyiyy < df, 1y - df = 1. (3g)

In (3), (32) is the re-dispatch constraint of the DGs at time
slot #. (3b) is the generation power constraint of the DGs at
time slot 7. (3¢) and (3d) are upward and downward reserve
power constraints of the DGs at time slot 7, respectively. (3¢)
and (3f) are upward and downward ramping power constraints
of the DGs at time slot #, respectively. (3g) is the re-dispatch
coefficient constraint of the DGs at time slot 7. Note that Dur-
ing the practical system operation period, the actual generation
power and redispatch power of DGs at the last time period is
known in the current time period. Thus, the ramping constraints
of DGs (3¢) and (3f) can be formulated as deterministic con-
straints. As for (3c) and (3d), the reserve power constraints of
DGs can be further formulated as the DRCC operation con-
straints since the reserve power should be scheduled before
the practical system operation day. The planned reserve power
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should satisfy the ramping limits of the DGs with the system’s
desired confidence level.

3.3.2 | RES operation constraints

The operation constraints of the RESs are formulated as
follows:

01\*B><1 < Pf\,cut < Pi{,fore‘ (4)

(4) is the curtailment power constraint of the RESs at time
slot 7.

333 |

DR operation constraints

The operation constraints of the FLs ate formulated as follows:

PFL — AP} + PI,,fore, (58.)
I L —L
AP! < AP} < AP, (5b)
D APl =0y, (50)
teT
APF - Ar | —Ldis
D U . (5d)

= Pl{_‘,fore At

In (5), (5a) is the adjusted load power constraint of the FLs
at time slot #. (5b) is the DR adjustment power limit con-
straint of the FLs at time slot 7. (5¢) can ensure that the total
energy demand of the FLs can still be satisfied after the load
power adjustment. (5d) is the load power adjustment discomfort
tolerance constraint of the FLs.

3.3.4 | Carbon trading constraints

The ladder-type carbon trading scheme [35] is considered in this
paper to further promote the low-carbon operation of the sys-
tem. The system’s carbon trading constraints are formulated as

follows:
Sys,init __ oSys,init 1., fore
B = g Y pliore, (62)
iENB
Sys,ac _ G pG
L, = z ¢ 17 (6b)
iENB
Sys,tr ﬂSys,init Sys,ac
EXST = I e (60)

In (6), (6a) is the initial free carbon emission quota constraint
of the system at time slot 7. (6b) is the actual carbon emission
constraint of the system at time slot #. (6¢) is the carbon trading
constraint of the system at time slot 7.

3.3.5 | Network operation constraints

The system’s network operation constraints are formulated as
follows:

P = SFS(PC + RY) + SFR(P}*'““ _pher g §}‘) _SF'P',

(72)
Pl =A-P), (7b)
Ligws - P =0. (7¢)

In (7), (7a) is the node injection power constraint of the sys-
tem at time slot #. (7b) is the branch power constraint of the
system at time slot 7. (7¢) is the system power balance constraint
at time slot .

3.3.6 | DRCC operation constraints

Considering the impact of the uncertainty on the system’s oper-
ation constraints. The system’s DRCC operation constraints are
formulated as follows:

~

inf [P.r {Pline <A. Pini <P } > 1 — € (8a)
PgREPZR ¢ -

t
i D.G U,G

i PR ) SR 2
3
t
(5b)

N . . —G

inf Perd PO <PY+d7(eTE") <P §>1—¢cp.

P;REPZR / - ’
i

(80)

In (8), (8a) is the DRCC branch power limit constraint of
the system at time slot # and €. is the system risk preference
parameter for the branch power constraint. (8b) is the DRCC
reserve power constraint of the DGs at time slot 7 and €g g
is the system risk preference parameter for the reserve power
constraint of the DGs. (8c) is the DRCC re-dispatch power
constraint of the DGs at time slot # and €5 p is the system
risk preference parameter for the re-dispatch power constraint
of the DGs. Note that the system risk preference parameters
Elines EG.R> €G,p represent the desired confidence level (i.e. the
allowable constraint violation probability) of the correspond-
ing DRCC system operation constraints (8a)—(8c), respectively.
(8b) means that the reserve power of the DGs should be able to
compensate for the power deviation caused by the uncertainties
at time slot # with the confidence level of 1 — &g . (8c) means
that the re-dispatch power of the DGs should be limited within
the generation power range at time slot # with the confidence
level of 1 — &g p.
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4 | CONVEX REFORMULATION FOR
THE DRCC OPERATION CONSTRAINTS

The origin DRCC operation constraints (8a)—(8c) are intractable
and implicit, which will bring great challenges to the sys-
tem’s decision process. To make the origin problem solvable,
the DRCC operation constraints (82)-(8c) can be teformu-
lated into convex constraints by using the SOC-based convex
reformulation technique in [30] as follows:

inf Pgr[l(x) < a,(x)TE + b.(x) Su(x)] 2 1—¢e, Ve €C,
Py ept ¥

%92)
-/ +/
Zl(x) — M’ ZZ(X) — M’Vf ec, (Qb)
inf  Per[=7"(x) < a.()TES + 4,(x)
PE}QGPZ
~I20) S T 21—, Ve €, 99)
2+ a0 ZRa ) <e(71) - 7)°
XEO =1 g +) ST <@+r) pVEC
0<%z < El(x),o < g,
d)

In (9), (9a) is the compact form of the DRCC operation con-
straints (8a)-(8¢). /.(x) and #,(x) are the affine mappings of the
lower bound and upper bound of the decision variable x for
the ah DRCC operation constraint at time slot #, respectively.
a,(x) and b,(x) are the affine mappings of the decision variable
x for the a#h DRCC operation constraint at time slot #, respec-
tively. With the introduction of 7' (x) and 7, (x) as defined in
(9b), (92) can be rewritten into a symmetric form as shown in
(9¢). Finally, the SOC-based convex reformulation constraints
of (92) are shown in (9d).

5 | CASE STUDIES

5.1 | Simulation setup

Experimental simulations are conducted to verify the advan-
tages and effectiveness of the proposed low-carbon DR
program. All the simulations are conducted on a 64-bit Win-
dows environment laptop with Intel(R) Core(TM) i5-12500H
3.10 GHz CPU and 16 GB RAM. The models are coded in
MATLAB 2021b with the YALMIP toolbox and solved by the
Gurobi 10.0 solver. The topology and parameter data infor-

mation of the IEEE 9-Bus and 39-Bus systems is provided in
[37].

5.2 | IEEE 9-Bus system

We conduct numerical tests on the IEEE 9-Bus system in this
case study. The topology of the IEEE 9-Bus system is shown in

Figure 2. The system base capacity is 100 MVA. The system has
3 DGs, 3 RES generators, and 3 FLs located at 3 different nodes.
Other network parameters and DG generation cost coefficients
are the same as those of the standard IEEE 9-Bus system. The
reserve cost coefficients are set as 5 times the DG generation
generation cost linear term coefficients. The daily load demand
forecast power and RES generation forecast power curves are
shown in Figure 3. The RES curtailment cost and DR adjust-
ment cost coefficients are set as 500 $/ MWh and 50 $§/ MWh,
respectively. The carbon trading price and carbon trading quan-
tity are set as 70 $/ ton and 2 ton, respectively. The carbon
trading reward/penalty price coefficients are set as 0.25/0.2,
respectively. The system’s initial carbon emission quota coeffi-
cient and DG carbon emission factor are set as 0.3 ton/MWh
and 0.85 ton/MWh, respectively. The maximum DR adjustment
power is set as 40% of the load forecast power. The node load
maximum discomfort tolerance is set as 20%. All the system risk
preference parameters are set as 0.3 for the simulations except
for the sensitivity analysis of the risk preference parameters. The
system operation horizon and operation time interval are set as
24 hand 1 h, respectively.

5.2.1 | Ambiguity set setting

We adopt the Monte Carlo simulation approach to generate
10000 scenarios of RES power forecast error following the
multivariate Gaussian distribution N’ ([.L}, Z}‘). The parameter
settings of N (ﬂ?, Z}{) are shown as follows:

Re; ~ — #. R, fore , .
{&@o—gP, ) "

.. R, fc . R,fo N
zf(z’/) =0, ¢- P, >re(l) P! re )

where ¢ and p; ; ate the ambiguity parameters to control the
uncertainty level. R (7, 7) denotes the i#h row ith column element
of E? and Pf’fore (7) denotes the #h row element of Pf’forc.

Note that we set uR = 05y, ¢ = 0.05, and p;; =02in
all the simulations for the RES uncertainty ambiguity. We ran-
domly select 500 samples from the generated 10000 scenarios to
form the training data. The rest of them form the test data set
to simulate the stochastic real-world environment. The consid-
eration for the load uncertainty ambiguity is similar to the RES
uncertainty ambiguity mentioned above. The detailed process is
shown in Appendices, Section A.

5.2.2 | Case studies setting

We compare comprehensive case studies with other system
operation modes to verify the advantages and effectiveness of
the low-carbon DR program considering uncertainty. The setup
for cases are listed as follows:

* Cuse I: The traditional system operation mode without DR
program.
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FIGURE 2 Topology of the IEEE 9-Bus
I Generators

system.
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Load demand forecast power and RES generation forecast

* Case II: The electricity DR program without carbon emission
impact concern.

* Cuse III: The proposed low-carbon DR program using the
TS-DRCC approach as in [30].

* Cuse IV The proposed low-carbon DR program using the
OS-DRCC approach as in [34].

5.2.3 | Simulation results and analysis

The DG operation strategies (including the DG generation
power, upward and downward power denoted as Pg, Rup, and
Rdn, respectively.) and load DR adjustment strategies (the load
DR adjustment power denoted as DR is the increased load
power minuses the decreased load power) under Case IIT are
shown in Figure 4. The comparison of the system’s power
utilization in the IEEE 9-Bus system under Cases I-1V is pre-
sented in Table 1. Moreover, the comparison of the system’s DR
adjustment and RES curtailment strategies is shown in Figure 5.
Here we want to emphasize rationality when choosing the sys-
tem risk preference parameters. Note that in Figure 5 we set
€line» EG.R> €G,p 3s 0.3 for the rational risk parameter case and
0.9999 for the over-optimistic risk parameter case, respectively.
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FIGURE 4 DG generation power, upward and downward reserve power,

and load DR adjustment power profiles of Case II1.

TABLE 1 Comparison of the system’s aggregated power utilization during
the operation hotizon in the IEEE 9-Bus system.

Power item (10°MW) CaseI  Casell Caselll CaselV
DG generation power 1.1610 1.0499 1.0038 0.9922
DG upward reserve power 1.3606 1.4004 1.6139 0.9811
DG downward reserve power  1.0710 1.0499 1.0038 0.9922
RES curtailment power 0.9455  0.8345 0.7884 0.7768
DR adjustment power 0.0000 0.2221 0.2545 0.2607

Case III with over-optimistic risk parameters

Case III with rational risk parameters
100

s B s Csmm
= [_IDR Adjustment Power =z [__IDR Adjustment Power =
S S2 =
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£ % z
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FIGURE 5 RES curtailment power and DR adjustment power of Case 111

under rational and over-optimistic risk preference parameters.
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TABLE 2  Comparison of the system’s aggregated operation costs during
the operation horizon in the IEEE 9-Bus system.

Cost item (10*$) Case I Case II Case III Case IV
System operation cost 8.1073 6.8388 6.5239 5.3347
DG generation cost 1.2871 1.0955 1.0325 0.9893
DG reserve cost 3.9566 4.0004 4.2599 3.2338
RES curtailment cost 1.4183 1.2517 1.1825 1.1652
DR adjustment cost 0.0000 0.0333 0.0382 0.0391
Carbon trading cost 1.4453 0.4579 0.0108 —0.0926

In Figure 5, we can find that the over-optimistic case nearly
reduces the RES curtailment power to zero. This is because
by choosing the system risk preference parameters close to
1, the system operator nearly neglects the system operation
constraints and utilizes the DR adjustment power to reduce
RES curtailment power. However, this kind of over-optimistic
operation mode will significantly threaten the system operation
security, the system operation constraints violation probability
under the test data set is 40.00%. On the contrary, the rational
risk parameter case can appropriately improve reasonable RES
power consumption while ensuring the system operation secu-
rity (The violation probability under the rational risk parameter
case is 32.20% lower than that of the over-optimistic risk param-
eter case). Thus, it can be concluded that propetly considering
the impact of uncertainty on the system operation constraints is
of great importance.

It can be concluded from the results in Table 1 that the pro-
posed low-carbon DR program in Case III outperforms Case
I and Case II from the aspects of carbon-intensive DG gen-
eration power reduction and clean RES power consumption.
Case II achieves 9.57% DG generation power reduction and
11.74% RES curtailment power reduction, and Case IIT achieves
13.54% DG generation power reduction and 16.62% RES cur-
tailment power reduction compared with Case I, respectively.
Particularly, Case III achieves 14.59% more DR adjustment
power utilization than Case II. Thus, it can be verified that the
proposed low-carbon DR program can motivate demand-side
DERs to participate in the low-carbon operation of the power
systems by considering the carbon emission impact of the DR
program on the system operation.

As for Case IV, though it seems to outperform Case III in
the aspects mentioned above, it will face greater system oper-
ation risk than Case I1I in practical applications, which will be
discussed later.

The comparison of the system’s operation costs in the IEEE
9-Bus system under Cases I-IV is presented in Table 2. Note
that the system can sell its surplus carbon emission quota at
some operation time slots to reduce the carbon trading cost by
adjusting the system power utilization profile.

From Table 2, we can find that Case III achieves the low-
est costs from the aspects listed in Table 2 except for the
DG reserve cost item among Cases I-III. Specifically, Case II
achieves 15.65% system operation cost reduction and 14.89%
DG generation cost reduction, and Case III achieves 19.53%
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FIGURE 6 Carbon emission and RES curtailment profiles of Cases I-III.

Uncertainty Resilience Performance of Case III & Case IV
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FIGURE 7  Uncertainty resilience performance comparison of Cases 111
and IV under test data.

system operation cost reduction and 19.78% DG generation
cost reduction compared with Case I, respectively. Since Case
III aims to utilize more clean RES power to promote the low-
carbon operation of the system, its DG reserve cost is 7.67%
higher than that of Case I to accommodate more fluctuated
RES power. However, the results demonstrate that this strategy
can eventually reduce the system operation cost and the carbon
trading cost. Case IV achieves the best performance at the cost
of sacrificing the system’s uncertainty resilience, which will be
discussed later.

The comparison of the system’s carbon trading quantity pro-
files and RES curtailment power profiles of Cases I-I11 is shown
in Fig 6.

It can be concluded from Fig 6 that Case III can reduce the
system’s carbon trading quantity (i.e. the system’s carbon emis-
sion quantity) by reducing the RES curtailment power during
the system operation horizon. Case III achieves 63.64% carbon
emission reduction compared with Case II.

The compatrison of the system’s uncertainty resilience perfor-
mance in the IEEE 9-Bus system of Case III and Case IV under
the test data set is presented in Figure 7. Note that the viola-
tion probability item in Figure 7 refers to the joint constraints
violation probability of (8a)—(8c), that is, the system’s operation
constraints are regarded as being violated as long as there is at
least one of the constraint in (8) is violated.

From Figure 7, we can find that the reserve power of Case
I1I is higher than that of Case IV during the system operation
hotizon. This is because the TS-DRCC approach is more
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TABLE 3  Comparison of the system’s aggregated operation costs in the
IEEE 9-Bus system during the operation hotizon under different carbon
trading prices.

TABLE 4 Comparison of the system’s aggregated operation costs in the
IEEE 9-Bus system during the operation horizon under different DR
adjustment capabilities.

C
7, ($/ton)
t
Cost item(10*$) 20 40 60 80 100

6.4722 6.5084 6.5313 6.5245 6.5239

System operation cost

Carbon trading cost 0.0605 0.0540 0.0441 -0.0020 -0.0356

20 : : 1500
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FIGURE 8 Uncertainty resilience performance comparison of Case 111
and Case IV under test data set with different risk preference parameters.

accurate than the OS-DRCC approach from the aspect of the
DRCC constraint convex reformulation process. Therefore, the
operation constraints violation probability of Case III is signif-
icantly lower than that of Case IV during the system operation
horizon, which is crucial to ensure the operation security of the
system with high-penetration uncertain RES power integration.

5.2.4 | Sensitivity analysis

The carbon trading price can be regarded as the weighting fac-
tor of the system’s environmental concern compared with the
system’s economic concern. The comparison of the system’s
operation costs and carbon trading costs in the IEEE 9-Bus sys-
tem under different carbon trading prices is shown in Table 3.
It can be found that the most significant system carbon trading
cost reduction occurs when the carbon trading price changes
from 60$/ ton to 80%/ ton. Thus, the reasonable pricing range
of the carbon trading price may be within around 60$/ ton to
80%/ ton, which is consistent with that of the current carbon
market like European carbon trading market [38].

The uncertainty resilience performance comparison of Case
III and Case IV under test data set with different risk preference
parameters is shown in Figure 8.

It can be found that Case III can achieve a more significant
system operation risk reduction compared with Case IV as the
risk preference parameter grows, which can further demonstrate
the advantages of the adopted TS-DRCC-based approach from
the aspect of the strategies’ uncertainty resilience.

The comparison of the system’s aggregated operation costs
in the IEEE 9-Bus system during the operation horizon under
different DR adjustment capabilities is shown in Table 4.
We can get the conclusion that the system’s DG generation

—L L fore —L.dis
AP, /P U ) (0.05,0.1) (0.1,02) (0.2,0.4)
Cost item (10*$)

System operation cost 7.1269 6.5604  6.5239
DG generation cost 1.1194 1.0376 1.0325
RES curtailment cost 1.2694 1.1890 1.1825
DR adjustment cost 0.0208 0.0369  0.0382
Carbon trading cost 0.5617 0.0559 0.0108

cost, RES curtailment cost, and carbon trading cost can be
significantly reduced by increasing the maximum DR adjust-
ment power and node load maximum discomfort tolerance
parameter. Moreover, the system can achieve considerable oper-
ation cost reduction with slightly increased DR adjustment
cost. Therefore, the system can improve its opetration flexibil-
ity to achieve better operation performance by increasing the
DR adjustment power within the rational discomfort tolerance
range of user loads.

The comparison of the system’s operation strategies in the
IEEE 9-Bus system during the operation horizon under differ-
ent ambiguity set parameters is shown in Table 5. Particularly,
we investigate the impact of the diagonal correlation coef-
ficient ¢ and the off-diagonal correlation coefficient p;,; on
the uncertainty level of the formulated ambiguity set. The
upward and downward reserve power of DGs can be regarded
as the criteria for the uncertainty level. We can find that the
impact of the diagonal correlation coefficient on the uncer-
tainty level of the formulated ambiguity set is more significant
than that of the off-diagonal correlation coefficient. By com-
pating the system’s operation strategies under (p; ; = 0.2,¢{ =
0.1), (o;,; = 0.2,¢ = 0.05) and W, = 0.4,¢ = 0.05), we can
see that by enlarging the diagonal correlation coefficient and
the off-diagonal correlation coefficient at the same scale, the
uncertainty level of the formulated ambiguity set increases more
significant by enlarging the diagonal correlation coefficient.
Morteover, by comparing the system’s operation strategies under
(p;,; = 0,§ =0.05), (p; , = 0.2,§ = 0.05) and (p, ; = 0.4,{ =
0.05), we can find that the uncertainty level of the formulated
ambiguity set doesn’t increase significantly as the off-diagonal
correlation coefficient increases.

5.3 | IEEE 39-Bus system
We further conduct experimental simulations on the IEEE 39-
Bus system to demonstrate the scalability and advantages of
the proposed low-carbon DR program. The base capacity of
the IEEE 39-Bus distribution system is 100 MVA. The sys-
tem has 10 DGs, 10 RES generators, and 21 FLs located at 21
different nodes.

The comparisons of the system’s power utilization and oper-
ation costs in the IEEE 39-Bus system under Cases I-III are
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TABLE 5 Comparison of the system’s aggregated power utilization during the operation horizon in the IEEE 9-Bus system under different ambiguity set

parameters.

©i,j5$)
W (0,0.05) (0.2,0.1) (0.2,0.05) (0.4,0.05)
DG generation power 1.0527 1.5074 1.0038 1.2803
DG upward reserve power 1.1296 2.0054 1.6139 1.6029
DG downward reserve power 0.9143 1.4895 1.0038 1.2228
RES curtailment power 0.8373 1.2919 0.7884 1.0648

TABLE 6 Comparison of the system’s aggregated power utilization during
the operation horizon in the IEEE 39-Bus system.

Power item (10°MW) Case I Case II Case III
DG generation power 1.9756 1.8241 1.7752
DG upwatd reserve power 2.5619 2.6499 2.9579
DG downward reserve power 1.8723 1.8241 1.7752
RES curtailment power 1.6309 1.4794 1.4305
DR adjustment power 0.0000 0.3030 0.3367

TABLE 7 Comparison of the system’s aggregated operation costs during
the operation horizon in the IEEE 39-Bus system.

Cost item (10°$) Case I Case II Case IIT
System operation cost 1.9119 1.7292 1.6984
DG generation cost 0.0757 0.0687 0.0665
DG reserve cost 0.6651 0.6711 0.7100
RES curtailment cost 0.8155 0.7397 0.7153
DR adjustment cost 0.0000 0.0318 0.0354
Carbon trading cost 0.3555 0.2179 0.1713

presented in Tables 6 and 7, respectively. From the system’
power utilization aspect, Case 11 achieves 7.67% DG generation
power reduction and 9.29% RES curtailment power reduction,
and Case III achieves 10.14% DG generation power reduc-
tion and 12.29% RES curtailment power reduction compared
with Case I, respectively. Particularly, Case IIT achieves 11.12%
more DR adjustment power utilization than Case II. From the
system’s operation costs aspect, Case II achieves 9.56% sys-
tem operation cost reduction and 9.25% DG generation cost
reduction, and Case III achieves 11.17% system operation cost
reduction and 12.15% DG generation cost reduction compared
with Case I, respectively.

The experimental results of the IEEE 39-Bus system can ver-
ify the advantages and the scalability of the proposed method.

6 | CONCLUSIONS

By considering the carbon emission impact of the system’s
operation strategies, a low-carbon DR program is proposed
to better balance the environmental and financial aspects of

the power systems while ensuring system operation security
at the preferred confidence level. The TS-DRCC approach
is adopted to better handle the uncertainty constraints with
more accurate convex approximation. To further promote the
low-carbon operation of the system, the ladder-type carbon
trading scheme is used to differentiate the carbon emission
costs associated with various carbon emission quantity inter-
vals. We can get the conclusions according to the experimental
simulations as follows. The proposed low-carbon DR program
is verified to achieve 63.64% more carbon emission reduc-
tion compared with the conventional DR program. Besides
this, the proposed low-carbon DR program can also achieve
4.39% carbon-intensive generation power reduction and 5.52%
RES power consumption compared with the conventional DR
program.

* Incorporating the carbon emission impact of the system’s
operation strategies can further reduce the system’s RES
power curtailment and carbon emission. Moreover, the
proposed low-carbon DR program can promote the par-
ticipation of the demand side in the coordinated system
operation.

* With the more accurate SOC-based approximation tech-
nique, the adopted TS-DRCC approach can achieve better
uncertainty resilience performance during the system opera-
tion compared with the inexact OS-DRCC approach.

* Modelling the uncertain system operation constraints can
reflect the impact of the uncertainty on the system-level and
equipment-level operation constraints like the power flow
constraints and DG operation constraints, which can fur-
ther enhance the system operation security as the new power
system transition proceeds.

Some parts of this work can be further improved. First, only
the FLs are considered in this work to participate in the low-
carbon DR program. Besides, the ambiguity sets describing
the uncertainties associated with the uncertainties of RESs and
loads are based on fixed moment information. In future work,
more kinds of DERs like energy storage systems (ESSs) on the
demand side can be integrated into the proposed low-carbon
DR program. Moreover, the DER aggregators can be intro-
duced to better organize these demand-side DERs to provide
operation flexibility for the power systems. Finally, alterna-
tive ambiguity sets can be further adapted to better handle
the uncertainties.
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NOMENCLATURE

I. Abbreviations

RES Renewable energy source.
DG Distributed generator.
FL  Flexible Load.
SO  Stochastic optimization.
CC Chance-constrained.
RO Robust optimization.

DRO
DRCC

Distributionally robust optimization.
Distributionally robust chance-constrained.

II. Indices and Sets

7 Index of the bus in the power system.
¢ Index of the DRCC operation constraint.
¢ Index of the time slot.
NB " Set of the buses in the power system.
C Set of the DRCC operation constraints.
T Set of the time slots during the operation hotizon.

Probability distribution of the total node power forecast

error at time slot 7.

Psr  Probability distribution of the node RES power forecast
error at time slot 7.

P gL Probability distribution of the node Load power forecast
error at time slot 7.

III. Parameters

NB
Az
&
R

t

&
G oG
C/.C;

CR
R, L,dis
CRocut CL.dis

C
t

o
Ap

T

SFC, SFR, SF-

A
—DG
P°C P

k]

—UDG —D,DG
R

5

-U,DG —-D,DG
r r

s

Number of the buses in the power system.
Operation time interval.

Total node power forecast error at time slot 7.
Node RES power forecast error at time slot 7.
Node Load power forecast error at time slot
.

DG generation cost quadratic term and linear
term coefficient matrices.

DG reserve cost coefficient matrix.

RES curtailment and Load discomfort com-
pensation cost coefficient matrices.

Catbon trading price at time slot 7.

Carbon trading quantity interval.

Carbon trading reward and penalty price coef-
ficients.

DG, RES, and Load power shift factor matri-
ces.

Node injection power shift factor matrix.

DG generation power lower bound and upper
bound mattrices.

DG upward reserve power and downward
reserve power upper bound matrices.

DG upward ramping power and downward
ramping power upper bound matrices.

PR,fore PL,fore

f ,P, Node RES forecast power and Load forecast

power at time slot 7.

—L
L .
AP, AP, Node DR adjustment power lower bound and
upper bound matrices at time slot 7.
—L,dis
Node Load maximum discomfort toler-
ance vector.
Sys,init R .
5, System initial carbon emission quota coeffi-

cient at time slot 7.
eZG Carbon emission factor of the DG connected
to bus 7.
€ Generic risk parameter.

€lines EG,R> EG,p  System operation risk parameters.

IV. Variables

PY RE DG generation power and re-dispatch power
vectors at time slot 7.
le DG re-dispatch participation coefficient vector

at time slot 7.

U,G D,G
R,",R, DG upward reserve power and downward
reserve powet vectors at time slot 7.
R, . .
P, “““ RES curtailment power vector at time slot 7.
PFL, AP} Flexible Load power and DR adjustment power
vectors at time slot 7.
Sys, tr b di . . 1
E, System carbon trading quantity at time slot .
10 1 . . . . . .
P, ! PlfmC Node injection powet and transmission line

power vectors at time slot 7.
9,3 Auxiliary variables.
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APPENDIX A
The ambiguity set of the node load demand power forecast
error is given as follows:

Pl i={Pya i Eplg)] = W Epl€ —uE — )1 =2

(A1)
where ftL is the node load demand power forecast error at time
slot #, :“% and Zﬁ“ are mean value vector and covariance matrix
of §/L> respectively.

To take the uncertainty associated with loads in (7a) and (8),
the ambiguity set of the total node power forecast error can be
formulated as a compact form as follows:

& =¢E"-¢&h, (A2a)

P, i={Pg, : Eplé] = i Ep[€ — 1) (& —p)' =2},
(A2b)

o= pt —p T, =38 -3 (A20)

In (A2), &, is the total node power forecast error at time slot
t, M, and X, are mean value vector and covariance matrix of
&, respectively.

Therefore, by considering &, (72) can be reformulated as
follows:

P’ = SFS(PC + RY) + SF* (P — P")
(A3)
—SF'PI' + &,

(8) can be reformulated as follows:

inf ¢ {gﬁ“ <A-PY<P

P’;’ er, } 21— Elines (A4a)
+

. D,G U,G
i, {00 <d(eTg) <O 2 1—en, ()
7 t

. G 3¢
u»;ne% ¢ {g <P +df(e’g) <P } >1—¢gp. (Ado)

Therefore, we can get the conclusion from (A1) to (A4) that
the total node power forecast error & can be interpreted as
the combination of the node RES power forecast error &X
and the node load power forecast error ftL regardless of the
uncertainty distribution.
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